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We find bounds for the polynomials Pn(x) orthogonal with respect to asymmetric
Freud weights of the form w(x)=exp(-Q(x)), where Q is an even degree poly
nomial with positiYe leading coefficient, by utilizing asymptotics for the recursion
caefficients an and bn and an approximate differential equation satisfied by.un!x).
r 1990 Academic Press. Inc.

I. I)\;TRODUCTlO~ A~D NOTA.TIO:\"

Let Q(x) be a polynomial of even degree with positive leading coefficient
and let w(x) = exp( - Q(x)) be a weight on the real line. The orthonormal
polynomials Pn(w; x) = 'I'" x" + "', where ~'" > 0, are defined by the relation

Pm(W; x) p,,(w; x) w(x) dx = om,,,'

Every system of orthogonal polynomials {p III d'Y.; x) } ,~~ 0 satisfies a three
term recurrence equation

xp,,(dr:t.; x) = a,,+ t P,,+ t(ay.; x) + b" p,,(d:x: x) + Cl"p,,_t(dr:t.; x), (1.1::

where a" = Q,,(dr:t.), b" = b,,(d:x). In this paper we will find bounds for Pn over
the real line. Our technique is to generate an approximate differential equa
tion and then derive the estimates using this equation and asymptotics for
an and b". This method is an extension of the model developed by Ronan
and Clark [5,6] to handle Freud weights of the form w",(x) = exp( -x"'),
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For the symmetric weights lI'm(X) the recurrence coefficient bn= 0. For the
asymmetric weights that we will investigate, bn is non-zero and introduces
a great deal of complexity to the analysis. We extend Ronan and Clark's
work in two ways. First, we pass to the asymmetric case, and second, we
eliminate an error term in the approximate differential equation.
Preliminary versions of our results were announced in [2] without proofs.
For further background see the surveys of Lubinsky [9] and Nevai [14],
and also Lubinsky and Saff [11] and Van Assche [20]; for specific
examples of these methods applied to the Hermite polynomials and the
symmetric Freud weights wm(x), see [5,6]. See also [16, 19] for general
reference.

When the meaning is clear, we write Pn = Pn(dex; x) = i'n(dex)xn+ "',
also, we use c, Co, C1, etc., to denote positive constants independent of n
and x, not necessarily keeping the same value from line to line. The nota
tion f ~ g will indicate that there exist positive constants C1 and Cz such
that

C1 g(x)::::; If(x)1 ::::; Cz g(x)

for the appropriate range of x.

II. THE MAl'" RESULTS

First, the approximate differential equation.

THEOREM I. Let Pn(w; x) be the orthogonal polynomials associated with
It'(X) = exp( - Q(x)) where Q(x) = L;;'= 1 dkxk/k, m is an even integer, and
dm>O, and let a,,=an(w) be the recurrence coefficient in (1.1). Then the
function

is a solution of

where

z(x) := Pn(w; x) jw(x)jA,,(x)

Z"(x) + r/ln(x) z(x) = 0,

(2.1 )

(2.2)

(2.3 )

(2.4)
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and
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and

The error function gIl has the bounds

C

( (

X ~ \ 2\
I ,: -'vb \ I 7/·

Ig,,(x)1 ~- 1+ 1m J ) A~\x).
n 2ea n i /

(2.6)

Remark. The constants Ca and Cb of (2.5), given by the Freud conjec
ture, are the limits of a"lnl'm and b" as n approaches infinity. They are from
the expansions given in [3, Theorem 5]. See also [12].

With the approximate differential equation in hand we can find bounds
for p,,(x).

THEOREM II. Let p,,(Il'; x) be the orthonormal polynomials associated
with w(x) as abore. Then there exists a positive consTant C such that for
Ix - cbi < 2ca n l /m and for n = 1, 2, ...,

_ C
p~( H'" x) 1\'(x) ,< --;:;==========::

fl , • -....;: /(2c n1 rn)2 _ [y __ r \2
"V u \~'\, -bl

(2.7)

where Ca and cb are the constants of (2.5).

We can now state the upper and lower bounds for p,,(x) on the real line.

THEOREM III. Let p,,(w; x) be as abore. Then

max p;,(w; x) w(x) ~ nI3
-

1
"".

XE 91.

III. THE GENERAL DIFFEREl"T!AL EQLATIO~

(2.8 )

Shohat [18J found that the orthogonal polynomials associated with
exponential weights having the form w(x) = (lIA(x) exp(J (B(x)jA(x) dx),
for fixed polynomials A > 0 and B, satisfy a second order differential
equation. Asymptotic expressions for the recurrence coefficients ant It'} and
b,,(w) have allowed analysis of these differential equations to produce
estimates for PIl(W; x).

In 1981 Bonan observed that the Freud polynomials form a generalized
Appell sequence (see [7J); it is from this observation and the recurrence
that we can easily generate a differential equation for p,,(H'; x). This method
of obtaining the differential equation is essentially due to Shohal.
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LEMMA 3.1. Let {Pll(W; x)} be a system of orthogonal polynomials that
satisfies

(3.1 )

for certain polynomials A,,(x) and B,,(x) of degree fixed and independent of
n. Then Pn(x) is a solution of

where

and

p~(x) + M(x) p~(x) + N(x) Pn(x) = 0, (3.2)

(3.3 )

Proof We differentiate (3.1) to obtain p:;=A~Pn-l+A"P;'-l
B~Pn-BllP;" then apply (3.1) to replacep~_l(x). Now use the recurrence
(Ll) to replace the P"_2(X) terms and (3.1) to eliminate Pn-l(X) terms to
obtain the result. I

Only for small degrees have A" and Bn been calculated explicitly (cf. [14,
pp. 130-136]). For example, for m = 2 (see, e.g., [8, p.49] or [19,
Sect. 5.5]), Q(x)=x2 gives

and

BnCx) = O.

When m=4 [1,14], then Q(x)=x4/4+q3(x 3j3)+q2(x2j2)+q 1 x and we
have

and
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For m = 6 [17], when Q(x) = x 6/6 we have

and

Transforming the differential equation of Lemma 3.1 obtains

THEOREM 3.2. Let Pn(w; x) satisfy (3.1) and set

z(x) := PIl(w; x) v'w ll (xl/A,,(x)

with
I, \

w ll (x) := exp ( i (M + A;,/A n ) dx I·
\' j

Then

z"(x) + cPn(x) z(x) =0,

where M is defined by (3.3), N by (3.4), and

cPn(x) := N(x) - ~M'(X) - i/vf 2(xl.

229

(3.5)

(3.6 )

i 3.7)

Proof We apply the standard transformation to eliminate the first
order term from (3.2) to generate (3.6) (see, e.g., [19, Sect. 1.8J). I

IV. Ai'! ApPROXIMATE DIFFERE"iTiAL EQUATlOi'! FOR Pn(W; x)

In 1984 Nevai [15] used estimates for ail and bn to asymptotically solve
the differential equation for the polynomials orthogonai with respect to
w(x)=exp( _x4

); subsequently, Sheen [17J and Bauldry [1J handled the
cases w(x) = exp( _x6) and w(x) = exp( - x 4+ 7C3(X)), 7C 3 an arbitrary cubic
polynomial, respectively. The expansions for an and bn are found in

THEOREM 4.1 (Bauldry, Mate, and Nevai [3, p. 223J). Let anew) and
bn( w) be the recursion coefficients of (1.1) for w(x) = exp( - Q(x)) irhere
Q(x) = L7:~ 1 dkxk/k, m is an ellen integer, and dm > O. Then there exist
constanrs '1 f.b i = 1, 2, and k = 1, 2, '" such that for any N> 0

s
an(w)n-L'm=ca + I ''li.kn-2k'''+o(n·-2Xm)

k~1

iLL i\
" ,. L j
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/1;

bn(W)=Cb+ L '12.k n --
2k

/
m +0(n-

2A
'/

m
),

k=1

(4.2)

where Ca and Cb are the constants of (2.5).

Bonan and Clark [6J developed an approximate differential equation
using the expansions for an to successfully analyze the even weight w(x) =
exp( _x2m

); here we extend their technique to the asymmetric case.
We begin with the Fourier expansion of p~(x).

LBIMA 4.2 (cr. [6, 13 J). The polynomials p,,( w; x) satisfy the relation

p~(w; x) = A,,(x) Pn -1 (w; x) - Bn(x) p,,(w; x), (4.3)

with

and

, Q'(t)-Q'(x)
An(x) := an J p~(w; t) w(t) dt

91 t-x
(4.4 )

, Q'(t)-Q'(x)
B,,(x) := an I Pn-l(W; t) Pn(I'V; t) w(t) dt. (4.5)

'91 t-x

Proof Write p~ in a Fourier expansion in terms of the kernel K,,(t, x) =
LZ:::b Pk(t) heX) as

p~(w; x) = r Kn(t, x) p~(w; t) w(t) dt.
"9"1

Now integrate by parts and use the orthogonality of Pn(t) to Kn(t, x) to
obtain

p~(w; x) = r Kn(t, x) p,,(w; t)(Q'(t) - Q'(x)) w(t) dt.
'!Ji

Last, we apply the Christoffel-Darboux identity (cr. [8, p. 24J) to finish the
derivation. I

This completes the preparations for the

Proof (Theorem I). The proof is in three parts; first we generate the
differential equation, then it is shown that IV,,(X) = w(x), and last, we
develop the bounds for g,,(x).
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1. The differential equation follows directly from Theorem 32 and
the previous lemma with the detinitions

Wn(x) := exp( -Q(x) + h.(:()),

• () ();" ( L£( A;,(x) \ dnn x :=Q x +, !lV.l x)+--, !·x,
- \ A,,(x}j

and

where M and IV are the functions defined by (3.3) and (3.4).

n (cr. [13]). The error function h,,(x) is eliminated by considering
the expression M + A~!An from the definition above: i.e.,

y h
l r) A' ( .). 4 () B () B i' ., - v" - t A /.
lY.1.~X + n X f.t n x, = 11-1 X. + ll\X)- ""Jl-l\X),

a l1 - 1

Using the definitions (4.4) and (4.5), we arrive at

A'l(x) + A~(x)/An(x)

X Q'(t) - Q'(x) w(t) dt.
t-x

The three-term recurrence (1.1) gives

, . Q'(t) - Q'(x) • _
= I Pn-I(t)((t-X)Pn-l(t)} t _ ~qt)dt

-91 .-X

which simplifies to

M(x) + A~(x)/An(x) = r P~ _ l(t) Qi(t) 11'(t) dt - Q'(X) r P~-l (t) W(t) dt
-91 '9:

= - Q'(X}.

Thus, hn(x) == O.

Remark. We are grateful to H. N. Mhaskar for suggesting the above
technique which removes the restriction that Q be a polynomial that
appeared in an earlier version of this manuscript.
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III. The last step is to find bounds for g ,,(x); we do this by sub
stituting the expressions for M and N into the definition of g" to find

lA,,_, I(X-b"_l ( A~ A~_I))
+-2--+-2 A,,_, B" __ l +B"--A+-A

a"_1 a"_1 " ,,-I

Since Q is a polynomial, we may find A" and B" explicitly; i.e.,

and

So that, after using asymptotics for a" and btl from (4.1) and (4.2), we have

and

Also note that because 2p,,_,(t) p,,(t)~P~_I(t)+p~(t), then

Substituting asymptotics for a" and btl and using the expressions above in
g,l' we arrive at the desired estimate. I

V. BOU:'IIDS FOR p,,(W; x)

The next step in our analysis is to generate the bounds for the polyno
mials P" by using the approximate differential equation. First we need a
technical lemma; it's stated in a form for arbitrary systems of orthogonal
polynomials.

LEMMA 5.1 [8, Sect. 1.04, p. 23]. Let a" = a,,(dx) be the recursion coef
ficient ~f(l.l), let x n ,,, < ... <Xk,,, < .,. <XI,,, be the zeros ofp,,(d:l.; x) and
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iet i_k." = ;-k.,,(d:t) > 0 be the Cotes numbers of the Gaussian Quadrature for
d':/.. Then for n = 1, 2, ..., and k = 1, 2, ..., ii,

Remark. Combining (4.3) evaluated at x kJ" k = 1, 2, .... n, with (5,11
shows that

(5"2)

which in turn gives

~ 5.3)

This brings us to the main results of our paper,

Proof (Theorem II). The proof is in three parts following the model of
Bonan and Clark [6]. First we use Sturm's Comparison Theorem to
develop an inequality for Ix - xk,,,I. The second step is to give an estimate
for Z2(X) by a concavity argument. The last stage is to apply the definition
of z(x) to obtain the result.

Remark. In order to simplify the exposition, we will assume Cb = 0; this
is equivalent to a translation to eliminate the x m

- 1 term from Q.

L Let [xl < Lcan lm
. Consider the differential equation

z;'(x) + r/J,~(t) z(x) = 0 where r/J;';(t) := c"A;,(t)(l - i2i'4c~n2 m) fo~

i~I<'tl<2{' nlm . and let x -K'rr i /"-*'1' K'·-() -i-J 4.-') bethezerns1"''- l~l "'a" ~ "'k- i'\.:VJn\.,J, -v,..!.._,......!-"'", ... , .i- .L .....

of z!. From Sturm's Comparison Theorem and the definitions of ¢n' q;;;.
and gIl' we have the zeros of z and z, interlace. Hence, for some zero XL,

of PI! we have

11:
IX-Xk.,,1 ~----c,==

virf;;;U)

Since t is arbitrary, we have

! 1T
\X-X k "I ~---:==

, '" ift:(x)
{5.4 )

II. Since rP" > 0, Eq. (2.2) implies that Izl IS concave between each
pair of consecutive zeros. Hence (cf. [6]),
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Applying the Cauchy-Schwarz inequality

We extend the first integral to ( - Xi, + 'X) and evaluate both to see

Equations (5.2) and (5.4) now give

(5.6)

III. Our last step is to apply the definition of z(x) to the inequality
above to see that

The result follows when the radicand is simplified to

c
p~(x)w(x):::; " 2 2

V 4a,,-x

and asymptotic expressions are substituted. I
This result is closely related to Theorem A(ii) of [to]; however, the

method of the proof is significantly different. We are now ready to proceed
to the proof of Theorem III. The idea of the proof is essentially the same
as that used by Bonan and Clark [6]; however, the asymmetry complicates
the calculations significantly. Use of new asymptotics for x 1" from [4] sim
plifies finding the upper estimate.

Proof (Theorem III). The upper bound follows from Theorem II along
with the observation that z decreases for large x and an integral estimate
for z(x) for x near XI" derived from z(x) = JJz" ds dt. The lower bound is
found using the identity (cf. [8, Sect. 1.3J)

_ j" (p,,(X»)2 w(x) d
1- 12 _ . X

91 X-X ln }·I"P" (Xl,,)
(5.7)
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and Bonan's observation that a significant portion of this integral occurs
away from Xl" together with an estimate for the kernel Kn(x) for x

near -'In'

r. The Upper Bound

When Ixi :5.; X In' we use Theorem II to obtain the bound. For
Xl"~ Ixi ~2CaflLm, we recall (5.5) with k= 1 and (5.2) to have

Replacing x by 2ea n l
'
rn and using the definition of z(x) gives

We use asymptotics for an from (4.1), for x 1/1 from [4, Theorem Il ana
An's expansion (4.6) to obtain

which yields the desired bound. Since we do not know the largest zero of
¢,Jx), i.e.. the exact point above which z(x) is always concave down, we
estimate z(.:r) for x around 2ca n1

'm as follows. Let Ix - 2ca nlml :5.; en -1 + 1m,

For some to such that It-tol ~cn-2.3+l'm and z'(to] =0,

Iz(x)-z(2ca n1m )1 ~cn2-2imn-23 fX . f{ Iz(s)1 dsdr
... 2Caf]! .""1 .J iO

which yields
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giving the required bound. For large lxi, we observe that z(x) is decreasing
to finish the derivation.

II. The Lower Bound

Set A={x:[x-xl"I:O::;en l
;3-

l
i
m

} and let K,,(x)=K,,(x,x). We use the
inequality

r X

p2(X):O::; Kn(x) j p2(t) w(t) dt
-x

for p(x) a polynomial of degree less than n (cf. [18, Sect. 3.1]) with p(x) =

Pn(x )!(x - x It,) to obtain

. (P (x) )2 w(x) rI -.-"-'- , 12 dx:O::; I Kn(t) w(t) dt
'Ll X-X ln Alll Pn(XI,,) 'Ll

which is

:O::;2en l
/
3

-
lim max (K,,(x) w(x».

XELI

The same procedure used in [6] gives the estimate needed for Kll (x)
over ,1,

max (KAx) w(x»:o::; cn-(l,'3-lim ).
xELJ

Then, with 1/4c, we have

• (Pn(X) )2 lV(X) 1I --' dx";:::-. 12 "" 7'
'Ll X-XVI ...·In Pll (X It,) -

which yields

1 j" ( Pll(X»)2 1'1'(X) d-:0::; --- 12 X.
2 'R/Ll X-Xln }'lnPll (XI,,)

Hence

from which the result follows. I
In a sequel we intend to sharpen the analysis of the error function g" of

the differential equation. It appears to be possible to develop asymptotics
for Pn( w; x) from the differential equation given improvements to this error
term.
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