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We find bounds for the polynomials p,(x} orthognna‘ with respect tc asvmmetrzc
Freud weights of the form w(x)=exp(—Q(x}}, where Q is an even degree :
nomial with positive leading coefficient, by utilizing asymptotics for the recursicn
coefficients 4, and b, and an approximate differential equation satisfied by z,(x}.
€ 1990 Academic Press, Inc.

1. INTRODUCTION AND NOTATION

Let Q{x) be a polynomial of even degree with positive leading coefficient
and let w{x)=-exp(— Q(x)) be a weight on the real line. The orthonormai
polynomials p,(w; x)=7y,x"+ ---, where 7, >0, are defined by the relation

in

A

i P ) palws x)wix)dx=4¢,, .

—

Every system of orthogonal polynomials {p
term recurrence equation

xpn(da; x) = an+1pn+ 1(d35. X\)+ bn pn{d'x: \:\ + Q,,_p,.,l{dﬁ. -“{'-:!-, {}E}
where a,=a,(dx), b,=b,(dx). In this paper we will find bounds for 5, cver
the real line. Our technique is to generate an approximate differential equa-
tion and then derive the estimates using this equation and asymptotics for
a, and b,. This method is an extension of the model developed by Bonan
and Clark [5, 6] to handle Freud weights of the form w,,(x) =exp{—x™}

* This material is based on research supported by the National Science Foundation vnder
Grant DMS-88-14488 and by the North Carolina Board of Science and Technelogy under
Grant 88-10.
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For the symmetric weights w,(x) the recurrence coefficient 4, =0. For the
asymmetric weights that we will investigate, b, is non-zero and introduces
a great deal of complexity to the analysis. We extend Bonan and Clark’s
work in two ways. First, we pass to the asymmetric case, and second, we
eliminate an error term in the approximate differential equation.
Preliminary versions of our results were announced in [2] without proofs.
For further background see the surveys of Lubinsky [9] and Nevai [14],
and also Lubinsky and Saff [11] and Van Assche [20]; for specific
examples of these methods applied to the Hermite polynomials and the
symmetric Freud weights w,,(x), see [S, 6]. See also [16, 197 for general
reference.

When the meaning is clear, we write p,= p,(do; x)=7y,(da)x"+ ---,
also, we use ¢, ¢4, ¢, etc., to denote positive constants independent of n
and x, not necessarily keeping the same value from line to line. The nota-
tion /'~ g will indicate that there exist positive constants ¢, and ¢, such
that

c; g(x) < f(x)l <z g(x)

for the appropriate range of x.

II. THE MAIN RESULTS

First, the approximate differential equation.

THEOREM L. Let p,(w; x) be the orthogonal polynomials associated with
w(x)=exp(—Q(x)) where Q(x)=3¥"_, d.x*/k, m is an even integer, and
d,, >0, and let a,=a,(w) be the recurrence coefficient in (1.1). Then the
Jfunction

z(x) :=p,(w; x) / w(x)/4,(x) (2.1)

is a solution of

Z2"(x) + Pulx) 2(x) =0, (2.2)
where
_ 2
.51 1= 430) (1= (5058 ) + a0 (23)
A,(x):=a, L P2(w; 1) Q(’—zig—("—) w(t) dt; (2.4)
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and

-1

¢ _"ﬁiﬂ m—13 7" d e Gmor 5

C, = _ an Cyt ——. {25}
[ m\m2—1 (m—1id,

mn

The error function g, has the bounds

X —cp V5

C
x)<-{1+ )
‘gn(‘”/l ﬂ( (2(‘“.’11'”’/’

Remark. The constants ¢, and ¢, of (2.5), given by the Freud conjec-
ture, are the limits of a,/n""" and b, as n approaches infinity. They are from
the expansions given in [3, Theorem 57. See also [12].

4,

e,
2
(&)

{x

———

D

With the approximate differential equation in hand we can find bounds
for p.(x).

TueoreM 1L Let p,(w;x) be the orthonormal polynomials associcted
with w{x) as above. Then there exists a positive consient C such thai for
Ix — g, <2c,n" and for n=1,2, ...,

C

Pa(w; x) w(x) < — . , (27
o V(26,817 —{x ¢, ) '

where ¢, and c, are the constants of {2.5).

We can now state the upper and lower bounds for p,{x) cn the real line.

TueoreEM . Let p,(w; x) be as above. Then

max p2(w; x) w(x)~n"3— 2.8}
xeR

II1. THE GENERAL DIFFERENTIAL EQUATION

Shohat [18] found that the orthogonal polynomials associated with
exponential weights having the form w(x) = (1/4(x)) exp(| {B{x)/A(x}} dx),
for fixed polynomials 4>0 and B, satisfy a second order differential
equation. Asymptotic expressions for the recurrence coefficients a,{i} and
b,{w) have allowed analysis of these differential equations to produce
estimates for p,(w; x).

In 1981 Bonan observed that the Freud polynomials form a generalized
Appell sequence (see [7]); it is from this observation and the recurrence
that we can easily generate a differential equation for p,{w; x}. This method
of obtaining the differential equation is essentially due to Shohat.
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Lemma 3.1 Let {p,(w;x)} be a system of orthogonal polynomials that
satisfies

PuAX)=A,(x) p,1(x) = B,(x) pu(x) (3.1)

Sfor certain polynomials A,(x) and B,(x) of degree fixed and independent of
n. Then p,(x) is a solution of

p1(x)+ M(x) D) + N(x) po(x) =0, (32)

where
M) =B, (x) + B0~ b, )-8 (33)

and
N(x) = A, 1 (x) ( In_ g () b=t B,,(x))
anfl anfl
£ B, () Byx) =) g )4 B, (3.4)
A'I(x)

Proof. We differentiate (3.1) to obtain p.=A,p, +A,p,_1—
B, p,— B, p,, then apply (3.1) to replace p,,_;(x). Now use the recurrence
(1.1) to replace the p,_,(x) terms and (3.1) to eliminate p,_(x) terms to
obtain the result. |

Only for small degrees have 4, and B, been calculated explicitly (cf. [14,
pp. 130-136]). For example, for m=2 (see, e.g, [8, p.49] or [19,
Sect. 5.57), Q(x) = x> gives

An(x) = 2an = \/E’;
and

B, (x)=0.

When m=4 [1, 14], then Q(x)=x%4+ ¢;(x’/3)+ ¢,(x*/2) + g,x and we
have

An(x)=an(x2 + (113 +bn)x+ (afz +ai+l+bi +bnq3 +‘h))
and

Bn(x)=ai(x+ (bn~1 +bn+q3))
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For m=6 [17]. when Q(x)=x%6 we have
Li71

(a2, ,+ai,  +al)

H+2 e+l

A fx)=a(x*+ (@@ +al, )X+ (a,

7 1

+a¥ai, +ai+ai_ )

2

B,(x)=al(x* + (a2 al+a yx)

n+1 T4,

Transforming the differential equation of Lemma 3.1 obtains

THEOREM 3.2.  Let p,(w; x) satisfy (3.1} and set

Z(x) = Pn(W; x) \,-'!‘v""fn(x);'!/"ln(x) §35 !
with
/o _ \
w{x) :=exp ( | (M + A, /A)dx .
\* /
Then
Z"(x)+ duix) z(x) =0, (3.6}
where M is defined by (3.3), N by (3.4), and
Gnu(x) == N(x)— S M'(x)— L M*{x). (37

Proof. We apply the standard transformation to eliminate the firs:
order term from (3.2) to generate (3.6) {sec, c.g., [19, Sect. 1.87). §

IV. AN APPROXIMATE DIFFERENTIAL EQUATION FOR p,(w; X}

In 1984 Nevai [157] used estimates for 2, and 5, to asymptoticaliy solve
the differential equation for the polynom‘ais orthogonal with respect to
w(x) =exp(—x*); subsequently, Sheen [ 177 and Bauldry [1] handled the
cases w(x)=exp(—x®) and w(x)=exp(—x*+ n5{x)), n; an arbitrary cubic
polynomial, respectively. The expansions for g, and 5, are found in

THEOREM 4.1 (Bauldry, Mate, and Nevai [3, p. 2231). Ler a,{») and

W) be the recursion coefficients of (1.1) for w{x) exn( Q(\:)} where
Q{x;=ZZ‘=1dkx klk, m is an even integer, and d, >0C. Then there cxist
constanis v, ., i=1,2, and k=1, 2, ... such that for any N 0

A
a,,(ur')n'l“"’ — Ca+ Z r]i.knfzk_.m + O{ﬁ-—A\r,m)
k=1

B
s
—
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and
N
bowy=ep+ Y, nyen F"m+o(n2Nm), (4.2)
k=1
where ¢, and ¢, are the constants of (2.5).

Bonan and Clark [6] developed an approximate differential equation
using the expansions for a, to successfully analyze the even weight w(x)=
exp(—x*™); here we extend their technique to the asymmetric case.

We begin with the Fourier expansion of p,(x).

LemMMa 4.2 (cf. [6, 13]). The polynomials p,.(w; x) satisfy the relation

po(w; x)=A,(x) p,_1(w; x)— B,(x) p.(w; x), (4.3)
with
A,(x)i=a, | pwi1) QW= |y g (4.4)
R I—x
and

B,(x):=a w(t) dt. (4.5)

n

| p"_l(nh—: t) P,,(W; t) QMX—)
R t—x

Proof. Write p, in a Fourier expansion in terms of the kernel K,,(¢, x) =

n—1

x—o Pi(t) pi(x) as
2iws X)= K, (8, x) pyw; 1) wie) d.
“R

Now integrate by parts and use the orthogonality of p,(z) to K,(¢, x) to
obtain

»

. K, (2, x) p(w; tNQ' (1) — Q'(x)) w(1) .

Pulw; x) =
Last, we apply the Christoffel-Darboux identity (cf. [8, p. 24]) to finish the
derivation. |
This completes the preparations for the

Proof (TheoremlI). The proof is in three parts; first we generate the
differential equation, then it is shown that w,(x)=w(x), and last, we
develop the bounds for g,(x).
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i~
tad
oo

I. The differential equation follows directly from Theorem 2.2 and
the previous lemma with the definitions

w,(x) := exp(—O(x) + ,{x}),

- £ (¢ )\
i) 2= Q) + | (M(x) PECICA Y

‘4i1<'¥:’/§
and
1 ) [ x—cy \\
2.(x) == N(x)—= M'(x) —= M*(x)— A2{x) | | — ( = .
\ et

where M and N are the functions defined by {3.2) and (3.4}

11 {cf. [13]). The error function A,{x} is eliminated by considering
the expression M + A4,/A4, from the definition above: ie.,

x—b,_,
‘:M(x)+A:1(x):’/‘4n(x):Bn—l(x)+B;z{x:’~ e

Using the definitions (4.4) and (4.5), we arrive at

M(x) + A,(x)/4,(x)

=j‘.R (an~1pn71(t) pn—Z(t)+anpn(’t) pn—l‘\’t}_~ (x_bnf‘}

L2(0-0x)

p— w(t) dt.

The three-term recurrence (1.1) gives

~

MY —O'(x)
= pacatt =) po o LEZED g
YR I—X

which simplifies to

M)+ A4, = [ P (0 QO Wl di—Q'x) | ph, (1)

= —Q'(%).
Thus, #,{x)=0.
Remark. We are grateful to H. N. Mhaskar for suggesting the above

technique which removes the restriction that @ be a pelynomial that
appeared in an earlier version of this manuscript.
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III. The last step is to find bounds for g,(x); we do this by sub-
stituting the expressions for M and N into the definition of g, to find

a, L/(x—c,\> , [(x—b,—1\°
gn(x)=An <a Anﬁl—‘4n>+z<<c nl_,"ri) A;_<_a—> Ai-l)

n—1 / n—1 /
14, , l/x-b,_, A, A,
+= +z 4, (B, +B,—="+="1
2anfl 2( a, 1< 1+ An+An~l))

1 1 ,
+E(B;1-B;;1)—Z(Bn~1+3n)h

14,

1 A, 3/A4,
+§(3Bn+3n_1)——— < >+2An.

4, 4\,
Since Q is a polynomial, we may find 4, and B, explicitly; i.e.,
A (x)=a,d,x""*+a,b,d,+d,_)x" >+ -, (4.6)
and

B,(x)=a;d,x" "+ ay((b,_(+b,) dptd, )x" 4 (47)

[/

So that, after using asymptotics for a, and b, from (4.1) and (4.2), we have
4 c .
IAn_An-lls-_lAn] and |Bn—Bn-1l<_!Bnl'
n n
Also note that because 2p,_ (t) p.(t) < p2_ () + pX(¢), then
IB,| <<1 +§) |4,.
Zn

Substituting asymptotics for a, and b,, and using the expressions above in
g., we arrive at the desired estimate. ||

V. BouUNDS FOR p,(w; x)

The next step in our analysis is to generate the bounds for the polyno-
mials p, by using the approximate differential equation. First we need a
technical lemma; it’s stated in a form for arbitrary systems of orthogonal
polynomials.

Lemma 5.1 [8, Sect. 1.04, p. 23].  Let a,=a,(dx) be the recursion coef-
ficient of (1.1), let x,,, < -+ <Xxp,< -+ <x, be the zeros of p,(dx; x) and
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let iy, = Ap\dn) >0 be the Cotes numbers of the Gaussian Quadrature
dx. Then forn=1,2, ., and k=1,2, .., n,

g — - y o, S
pn( vk.ns pn ('}'k.ni Sleone it
Remark. Combining (4.3) evaluated at x,,, k=1,2, .. 4, with {51;
shows that
; p;(xk.n) 12y - ;& oA
An(xk n):p (Y ):anpn {xk.nE Akons (7L}
n— 1 Yka
which in turn gives
Ax,.)>0. {333

This brings us to the main results of our paper.

Proof {(Theorem1l). The proof is in three parts following the model of
Bonan and Clark [67]. First we use Sturm’s Compariscn Theorem tc
develop an inequality for |x —x, ,|. The second step is to give an estimate
for z?(x) by a concavity argument. The last stage is to apply the definition
of z{x) to obtain the resuit.

Remark. In order to simplify the exposition, we will assume ¢, =¢;
is equivalent to a translation to eliminate the x™~! term from Q.

I Let !x 2c,n'™  Consider the differential equation
M x) 4+ X () z(x) = where ¢,’,“{ﬁ = -,, AXE — i34c2n® ™y for
ix! <t <2 nt™ and let x, =km/\/$x1t), k=0, £1, +2, .., be the z¢
of z,. From Sturm’s Comparison Theorem and the definitions of G
and g,, we have the zeros of z and z, interlace. Hence, for some zero
of p, we have
. n
X — xk.nl M'
AV $r (”
Since ¢ is arbitrary, we have
T
ix —xk,n! < '\S 45

NLIIES

II. Since ¢, >0, Eq. (2.2) implies that |z] is
pair of consecutive zeros. Hence (cf. [6]),

[¢]

oncave between cach

1 Y
5 I-'{x)( Yk r)l
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Applying the Cauchy-Schwarz inequality

_ 1 putyw(r)  ¢x
{— (x)(x unj( Jvk”mtlm(t—xk_n)zdt

2
c o p)w(r) rx )
- < dt F—X, ) dt.
An(xkzn)"—\'k.n (t YI\ ")2 ‘ .r:( . )

~

We extend the first integral to (— oo, 4+ 20) and evaluate both to see

1 2 .
{5 z(x)(x—xk,,,)} < A"(;k,n) lten Py o)X — X ). (5.5)

Equations (5.2) and (5.4) now give

2 —— 5.6
‘ (X)<\/a2¢,l( ) ( )

III. Our last step is to apply the definition of z(x) to the inequality
above to see that

C
JaZPEx)/AX(x)

The result follows when the radicand is simplified to

prx) wlx) <

pa(x) w(x) <

; 2
V4al—x?

and asymptotic expressions are substituted. ||

This result is closely related to Theorem A(ii) of [10]; however, the
method of the proof is significantly different. We are now ready to proceed
to the proof of Theorem III. The idea of the proof is essentially the same
as that used by Bonan and Clark [6]; however, the asymmetry complicates
the calculations significantly. Use of new asymptotics for x,, from [4] sim-
plifies finding the upper estimate.

Proof (Theorem 111). The upper bound follows from Theorem II along
with the observation that z decreases for large x and an integral estimate
for z(x) for x near x,, derived from z(x) = || z" ds dt. The lower bound is
found using the identity (cf. [8, Sect. 1.3])

[ (2 ) w(x) .
I_Jiﬁ<x—x1n )"Inp)gz(xln)dx (57)
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and Bonan’s observation that a significant portion of this integral occurs
away from x,, together with an estimate for the kernel K, {(x} for x
near x

I. The Upper Bound

When |x/<x,,, we use TheoremIl to obtain the bound. For
X1, < lxl < 2e,a2%™, we recall (5.5) with k=1 and (5.2) to have

A pii(x .
ZZ(.\’)g(l‘ lnpn( ln)}x_x‘ln.i

A(':(In ;’

<cea,; x—x,l

Replacing x by 2¢,n"™ and using the definition of z(x) gives

A, (2c,nt™)

pAx)w(x)<c L2t = x, .

an

We use asymptotics for a, from (4.1}, for x,, from [4, Theorem I], and
A4,’s expansion (4.6) to obtain

prHx)w(x) <L c(n"™y" = n =53

which yields the desired bound. Since we do not know the largest zero of
é,(x), iec., the exact point above which z{x) is always concave down, we
estimate z{x) for x around 2c,n*"" as follows. Let |x —2c n""| <cn™' 47,
For some t, such that |1 — 1| <en 234" gnd z'(¢,} =0,

. , ¢ X al . ‘
et i<(145) | [ girtsr o s a
n/e 2egnt v gy
}.-.\‘ I”‘Az( ) /i I/ 3 \\,7\ ( }[ 7 (Z’
<c s —{ =" | {z(s}| ds dr.
S D entim “‘ro § ( i\?_can"’m} ) '
Since 4,(x)~a,x" ? and 1 —(5/2c,n*™)* ~n %3,
x ~
|2(x) — z(2c,n"™) S en® ™ 27 | | Jz(s)] ds dr
"‘ann' m e
 ar B N\ 12
<t zm (‘mg pis)wis)ds)  dr.
< anﬂl""' v Y oo

which yields

l2(x) — z2c, n'"™)} K en®3 — ™ — 1| ¥ x = 20,1t "
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giving the required bound. For large |x|, we observe that z(x) is decreasing
to finish the derivation.

II. The Lower Bound
Set A= {x:|x—x,|<en'> "} and let K,(x)=K,(x, x). We use the
inequality
PROSK) [ p0)wi) dr
for p(x) a polynomial of degree less than » (cf. [18, Sect. 3.1]) with p(x)=
Pa(x)/(x—x,,) to obtain

" < pn(-x) )2 W(x) dx< ." Kn(t) W(t) dt

L) i

which is

<2en'? V" max (K,(x) w(x)).

xed

The same procedure used in [6] gives the estimate needed for K,(x)
over 4,

max (K,(x) w(x)) < cn— (13~ 1m),
xed

Then, with 1/4c, we have

()

JA X —Xyp /.'In ptgz('xln)

which yields

~ ) 2 H
14 < Pn(x) ) w{(jX) Jx.
2 R4 X—Xin )'lnpn~(x1n)
Hence

L <elen ! max (p3(x) w(x)),

1/3 — lim) —
2 xed

from which the result follows. |

In a sequel we intend to sharpen the analysis of the error function g, of
the differential equation. It appears to be possible to develop asymptotics
for p,(w; x) from the differential equation given improvements to this error
term.



The author thanks Doron Lubinsky, H. N. Mhaskar, and Paul Nevai for many heipful

3
G

ASYMMETRIC FREUD POLYNOMIALS

ACKNOWLEDGMENTS

suggestions and comments.

iL=N [¥9) [ 5] o

wn

N GO

. Wum. C. Batrpry, “Orthogonal Polynomials Associated with Exponential

. D. 8. Luinsky anp E. B. SAFr. Strong asymptotics for extremal polynomiais assoc

. A, MATE, P. Neval, anxp T. ZasLavsky, Asymptotic expansions of the ratis

{4, P. Neval. Géza Freud, orthogonal polynomials and Chris

. W. Van AssCHE, “Asymptotics for Orthogonal Pelynomials,” Lecture Notes in M

REFERENCES

Ph.D. dissertation, Ohio State University, Columbus, OH, 1985,

. Wum. C. BaULDRY, Estimates of asymmetric Freud polynomials, in “Proceedings of the

Sixth Texas Symposium on Approximation Theory,” Texas A&M University, in press.

. Wy, C. BaUuLDRY. A. MATE, AxD P. Neval, Asymptotics for solutions of systems of

smooth recurrence equations, Pacific J. Math. 133 (1988), 209-228.

. WM. C. BAULDRY AND J. WALLINGTON, Asymptotics for the greatest zero of asymmetric

Freud polynomials, manuscript.
8. 5. Boxan anp D. S. CLark, Estimates of the orthogonal polynomials with weig
exp( —x™), m an even positive integer, J. Approx. Theory 46 {1986}, 408-410.

. 5. S. Boxan anD D. S. Crark, Estimates of the Hermite and the Freud poivnomials.

J. Approx. Theory 63 (1990), 210-224.

- 5. S. Boxan axp P. Nevar, Orthogonal polynomials and their derivatives, L. /. Approx.

Theory 40 (1984), 134-147.

. G. Fretp. “Orthogonal Polynomials,” Akad. Kiadd:Pergamon, Budapest, 1971,
. D. S, LuBinsky, A survey of general orthogonal polynomials for weights on finits and

infinite intervals, Acta Appl. Math., in press.
174 p

. D. S. Lusinsky, On Nevai’s bounds for orthogona! polynomials associated with exponen-

tal weights, J. Approx. Theory 44 (1985), 343-379.

with weights on R, in “Lecture Notes in Math.,” Vol 1305, Springer-Verlag, New Vor«:
1988.

ceefficients of orthogonal polynomials with exponential weights, Trans. Amer. Maz:
287 {1985), 495-505.

. H. N. MHaskAR, Bounds for certain Freud-type orthogonal polynomiais, J. Approx.

Theory 63 (1990), 238-254.
flel functions: A case study.

v—r

Approx. Theory 48 (1986), 3-167.

NEval, Exact bounds for orthogonal polynomials assoc with exponential weights,
{pprox. Theory 44 (1985}, 82-85.

. NEvVal, “Orthogonal Polynomials,” Memoirs Amer. Math. Soc.. Vol 213, Amer. Math,
cc., Providence, RI, 1979.

"U,N:’U&

7]

R. C. SHEEx, Asymptotics for orthogonal polynomials associated with exp{—x%
J. Approx. Theory 30 (1987), 232-293.

3. A. SuoHAT, A differential equation for orthogonal polynomials. Duke Math. J. 5 (1935},
401-417.

i9. G. SzeGO, “Orthogonal Polynomials,” Amer. Math. Soc. Coilog. Publ., Vol. 23, 3rd ed,,

Amer. Math. Soc., Providence, RI, 1967.

1265, Springer-Verlag, New York, 1987.

640 63.2-¢



